Journal of neurophysiology
-
Sequential sampling models provide a useful framework for understanding human decision making. A key component of these models is an evidence accumulation process in which information is accrued over time to a threshold, at which point a choice is made. Previous neurophysiological studies on perceptual decision making have suggested accumulation occurs only in sensorimotor areas involved in making the action for the choice. ⋯ Critically, such neural signatures did not depend on response modality or foreknowledge. These results help establish human brain areas involved in evidence accumulation and suggest that the neural mechanism for evidence accumulation is not specific to effectors. Instead, the neural system might accumulate evidence for particular stimulus features relevant to a perceptual task.
-
Comparative Study
Postnatal maturation of the hyperpolarization-activated cation current, I(h), in trigeminal sensory neurons.
Hyperpolarization-activated inward currents (I(h)) contribute to neuronal excitability in sensory neurons. Four subtypes of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels generate I(h), with different activation kinetics and cAMP sensitivities. The aim of the present study was to examine the postnatal development of I(h) and HCN channel subunits in trigeminal ganglion (TG) neurons. ⋯ Western blot analysis of the TG detected immunoreactive bands corresponding to all HCN subtypes. HCN1 and HCN2 band density increased with postnatal age, whereas the low-intensity HCN3 and moderate-intensity HCN4 bands were not changed. This study suggests that functional I(h) are activated in rat trigeminal sensory neurons from P1 during postnatal development, have an increasing role with age, and modify neuronal excitability.
-
After incomplete spinal cord injury (SCI), compensatory changes occur throughout the whole neuraxis, including the spinal cord below the lesion, as suggested by previous experiments using a dual SCI paradigm. Indeed, cats submitted to a lateral spinal hemisection at T10-T11 and trained on a treadmill for 3-14 wk re-expressed bilateral hindlimb locomotion as soon as 24 h after spinalization, a process that normally takes 2-3 wk when a complete spinalization is performed without a prior hemisection. In this study, we wanted to ascertain whether similar effects could occur spontaneously without training between the two SCIs and within a short period of 3 wk in 11 cats. ⋯ In these 9 cats, the hindlimb on the side of the previous hemisection (left hindlimb) performed better than the right side in contrast to that observed during the hemispinal period itself. Cats re-expressing the best bilateral hindlimb locomotion after spinalization had the largest initial hemilesion and the most prominent locomotor deficits after this first SCI. These results provide evidence that 1) marked reorganization of the spinal locomotor circuitry can occur without specific locomotor training and within a short period of 3 wk; 2) the spinal cord can reorganize in a more or less symmetrical way; and 3) the ability to walk after spinalization depends on the degree of deficits and adaptation observed in the hemispinal period.
-
Randomized Controlled Trial Comparative Study
Object-level visual information gets through the bottleneck of crowding.
Natural visual scenes are cluttered. In such scenes, many objects in the periphery can be crowded, blocked from identification, simply because of the dense array of clutter. ⋯ Here, we show that this is not so: an entire face can survive crowding and contribute its holistic attributes to the perceived average of the set, despite being blocked from recognition. Our results show that crowding does not dismantle high-level object representations to their component features.
-
In the present study, we investigated whether intradermal cheek injection of pruritogens or algogens differentially elicits hindlimb scratches or forelimb wipes in Sprague-Dawley rats, as recently reported in mice. We also investigated responses of primary sensory trigeminal ganglion (TG) and dorsal root ganglion (DRG) cells, as well as second-order neurons in trigeminal subnucleus caudalis (Vc), to pruritic and algesic stimuli. 5-HT was the most effective chemical to elicit dose-dependent bouts of hindlimb scratches directed to the cheek, with significantly less forelimb wiping, consistent with itch. Chloroquine also elicited significant scratching but not wiping. ⋯ Most were wide dynamic range (WDR) or nociceptive specific (NS), and a few were mechanically insensitive. The large majority additionally responded to AITC and/or capsaicin and thus were not pruritogen selective. These results suggest that primary and second-order neurons responsive to pruritogens and algogens may utilize a population coding mechanism to distinguish between itch and pain, sensations that are behaviorally manifested by distinct hindlimb scratching and forelimb wiping responses.