Int J Med Sci
-
Background: The differentially expressed proteins (DEPs) involved in the effect of hydrogen-rich water on myocardial ischemia reperfusion injury (MIRI) and their biological processes and signaling pathway were analyzed. Methods: 20 Wistar rats were randomly and equally divided into a control and a hydrogen-rich group. Hearts were removed and fixed in a Langendorff device. ⋯ Five signaling pathways were selected by KEGG pathway enrichment analysis. Conclusions: 25 proteins that are involved in hydrogen-water reducing MIRI were selected by high-throughput GSR-CAA-67. The biological processes and metabolic pathways involved in the DEPs were summarized, providing theoretical evidence for the clinical application of hydrogen-rich water.
-
Catechol-O-Methyltranferase (COMT) plays a crucial role in the removal of cortical dopamine and is strongly implicated in human executive function. Numerous studies have reported associations of the COMT Val158Met (rs4680) polymorphism with executive function in healthy subjects. However, little work has investigated this in the Thai population and the relationship of age and education with this association remains unclear. ⋯ Moreover, Met allele carriers showed a significantly stronger effect in the categories completed score than did Val homozygotes. Furthermore, age and education also showed a significant association with COMT genotype and WCST. These results revealed that executive cognitive function is associated with COMT genotype and influenced by age and/or education level in a Thai sample.
-
Background: Kawasaki disease (KD) is the most common acute coronary vasculitis to occur in children. Although we have uncovered global DNA hypomethylation in KD, its underlying cause remains uncertain. In this study, we performed a survey of transcript levels of DNA methyltransferases and demethylases in KD patients. ⋯ Through PCR validation, we observed that the expression of DNMT1 and TET2 are consistent with the Transcriptome Array 2.0 results. Furthermore, we observed significantly lower DMNT1 mRNA levels following IVIG treatment between those who developed CAL and those who did not. Conclusion: Our findings provide an evidence of DNA methyltransferases and demethylases changes and are among the first report that transient DNA hypomethylation is induced during acute inflammatory phase of Kawasaki disease.
-
Human papillomavirus type 16 (HPV16) is a high-risk HPV type and a potent carcinogen. HPV E1 is one of the most highly conserved proteins and it plays a central role in initiating HPV DNA replication. In current study, we enrolled 161 HPV16-positive cervical cancer patients (case group) and 171 HPV16-positive asymptomatic individuals (control group) in a study to analyse the association between HPV16 E1 genetic mutations and cervical cancer. ⋯ When the distribution of the HPV16 E1 gene mutations was compared, the distribution of twenty-seven mutations was significantly different between the case and control groups (P<0.05), and twenty-two mutations occurred only in the D3 (AA1) sub-lineage, two were found only in the A4 (As) sub-lineage, one was found in the A1-A3 (EUR) sub-lineage, two was found in both the A4 (As) and A1-A3 (EUR) sub-lineages. In the sub-lineage analysis, the differences in the T933A (A23A), T1014G (D50E) and G2160A (R432R) mutations were statistically significant between the case and control groups for the A4 (As) sub-lineage (P<0.05), and the differences in the T2232C (F456F), G2337A (M491I) and A2547G (P561P) mutations were statistically significant between the case and control groups for the A1-A3 (EUR) sub-lineage (P<0.05). In the current study, we describe specific mutations in the HPV16 E1 gene associated with cervical cancer, and our study will provide a good reference for further functional studies of the relationship between cervical cancer carcinogenesis and HPV genes.
-
Endometrial cancer is one of the most common cancers in women worldwide, affecting more than 300,000 women annually. Dysregulated gene expression, especially those mediated by microRNAs, play important role in the development and progression of cancer. This study aimed to investigate differentially expressed genes in endometrial adenocarcinoma using next generation sequencing (NGS) and bioinformatics. ⋯ The analyses using Human Protein Atlas, identified 6 genes (PEG10, CLDN1, ASS1, WNT7A, GLDC, and RSAD2) significantly associated with poorer prognosis and 3 genes (SFN, PIGR, and CDKN1A) significantly associated with better prognosis. Combining with the data of microRNA profiles using microRNA target predicting tools, two significantly dysregulated microRNA-mediated gene expression changes in endometrial adenocarcinoma were identified: downregulated hsa-miR-127-5p with upregulated CSTB and upregulated hsa-miR-218-5p with downregulated HPGD. These findings may contribute important new insights into possible novel diagnostic or therapeutic strategies for endometrial adenocarcinoma.