NeuroImage. Clinical
-
NeuroImage. Clinical · Jan 2018
Advanced diffusion imaging for assessing normal white matter development in neonates and characterizing aberrant development in congenital heart disease.
Elucidating developmental trajectories of white matter (WM) microstructure is critically important for understanding normal development and regional vulnerabilities in several brain disorders. Diffusion Weighted Imaging (DWI) is currently the method of choice for in-vivo white matter assessment. A majority of neonatal studies use the standard Diffusion Tensor Imaging (DTI) model although more advanced models such as the Neurite Orientation Dispersion and Density Imaging (NODDI) model and the Gaussian Mixture Model (GMM) have been used in adult population. In this study, we compare the ability of these three diffusion models to detect regional white matter maturation in typically developing control (TDC) neonates and regional abnormalities in neonates with congenital heart disease (CHD). ⋯ In this study, all three methods revealed the expected changes in the WM regions during the early postnatal weeks; however, GMM outperformed DTI and NODDI as it showed significantly larger effect sizes while detecting differences between the TDC and CHD neonates. Future studies based on a larger sample are needed to confirm these results and to explore clinical correlates.
-
NeuroImage. Clinical · Jan 2018
Connectivity derived thalamic segmentation in deep brain stimulation for tremor.
The ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in the treatment of tremor in Parkinson's disease (PD) and essential tremor (ET). It is centrally placed on a cerebello-thalamo-cortical network connecting the primary motor cortex, to the dentate nucleus of the contralateral cerebellum through the dentato-rubro-thalamic tract (DRT). The VIM is not readily visible on conventional MR imaging, so identifying the surgical target traditionally involved indirect targeting that relies on atlas-defined coordinates. ⋯ The thalamic area, best representing the VIM, is connected to the contralateral dentate cerebellar nucleus. Connectivity based segmentation of the VIM can be achieved in individual patients in a clinically feasible timescale, using HARDI and high performance computing with parallel GPU processing. This same technique can map out the DRT tract with clear mesencephalic crossing.
-
NeuroImage. Clinical · Jan 2018
Corpus callosum volumes in the 5 years following the first-episode of schizophrenia: Effects of antipsychotics, chronicity and maturation.
White matter (WM) structural changes, particularly affecting the corpus callosum (CC), seem to be critically implicated in psychosis. Whether such abnormalities are progressive or static is still a matter of debate in schizophrenia research. Aberrant maturation processes might also influence the longitudinal trajectory of age-related CC changes in schizophrenia patients. We investigated whether patients with first-episode schizophrenia-related psychoses (FESZ) would present longitudinal CC and whole WM volume changes over the 5 years after disease onset. ⋯ Continuous AP exposure can influence CC morphology during the first years after schizophrenia onset. Schizophrenia is associated with an abnormal pattern of total WM and anterior CC aging during non-elderly adulthood, and this adds complexity to the discussion on the static or progressive nature of structural abnormalities in psychosis.
-
NeuroImage. Clinical · Jan 2018
Task-free spectral EEG dynamics track and predict patient recovery from severe acquired brain injury.
For some patients, coma is followed by a state of unresponsiveness, while other patients develop signs of awareness. In practice, detecting signs of awareness may be hindered by possible impairments in the patient's motoric, sensory, or cognitive abilities, resulting in a substantial proportion of misdiagnosed disorders of consciousness. Task-free paradigms that are independent of the patient's sensorimotor and neurocognitive abilities may offer a solution to this challenge. ⋯ Our findings show that spectral amplitude and connectivity track patient recovery in a longitudinal fashion, and these metrics are robust pathophysiological markers that can be used for the automated diagnosis and prognosis of disorders of consciousness. These metrics can be acquired inexpensively at bedside, and are fully independent of the patient's neurocognitive abilities. Lastly, our findings tentatively suggest that the relative preservation of thalamo-cortico-thalamic interactions may predict the later reemergence of awareness, and could thus shed new light on the pathophysiological processes that underlie disorders of consciousness.
-
NeuroImage. Clinical · Jan 2018
Association of acute depressive symptoms and functional connectivity of emotional processing regions following sport-related concussion.
Acute mood disturbance following sport-related concussion is common and is known to adversely affect post-concussion symptoms and recovery. The physiological underpinnings of depressive symptoms following concussion, however, are relatively understudied. We hypothesized that functional connectivity of the emotional processing network would be altered in concussed athletes and associated with the severity of depressive symptoms following concussion. ⋯ Finally, the relationships with HAM-D scores were not driven by a general increase in somatic complaints captured by the HAM-D, but were strongly associated with mood-specific HAM-D items. These results suggest that connectivity of emotional processing regions is associated with acute mood disturbance following sport-related concussion. Increased connectivity between attention and default mode regions may reflect compensatory mechanisms.