Articles: neuropathic-pain.
-
MicroRNAs have been reported to be an important pathophysiological factor in neuropathic pain. However, the potential mechanism through which miRNAs function in neuropathic pain remains unclear. The purpose of this study was to explore the potential role of mir-34c in neuropathic pain in a mouse model of chronic constriction injury (CCI). ⋯ We also demonstrated that miR-34c suppressed the expression of NLRP3 by directly binding the 3'-untranslated region. Overexpression of miR-34c decreased the protein levels of NLRP3, ASC, caspase-1, IL-1β, and IL-18 in the spinal cord in CCI mice. Together, our results indicated that miR-34c may inhibit neuropathic pain development in CCI mice through inhibiting NLRP3-mediated neuroinflammation.
-
Virtual and augmented imagery are emerging technologies with potential to reduce the severity and impact of neuropathic pain in people with spinal cord injury (SCI). ⋯ Although the number of studies and individual sample sizes are small, these initial findings are promising. Given the limited options available for the effective treatment of neuropathic SCI pain and early evidence of efficacy, they provide valuable incentive for further research.
-
Randomized Controlled Trial
Burst SCS Microdosing Is as Efficacious as Standard Burst SCS in Treating Chronic Back and Leg Pain: Results From a Randomized Controlled Trial.
The burst waveform, a recent innovation in spinal cord stimulation (SCS), can achieve better outcomes than conventional tonic SCS, both for de novo implants and as a salvage therapy. Burst stimulation delivers more energy per second than tonic stimulation, which is a consideration for battery consumption. The clinical effectiveness of an energy-conserving strategy was investigated. ⋯ These results suggest that the use of energy-efficient burst microdosing stimulation paradigms with alternating stimulation-on and stimulation-off periods can provide clinically equivalent results to standard burst stimulation. This is important for extending SCS battery life. Further research is needed to comprehensively characterize the clinical utility of this approach and the neurophysiological mechanisms for the maintenance of pain relief during stimulation-off periods.
-
We showed previously that spinal metabotropic glutamate receptor 1 (mGluR1) signaling suppresses or facilitates (depending on the stage of estrous cycle) analgesic responsiveness to intrathecal endomorphin 2, a highly mu-opioid receptor-selective endogenous opioid. Spinal endomorphin 2 antinociception is suppressed during diestrus by mGluR1 when it is activated by membrane estrogen receptor alpha (mERα) and is facilitated during proestrus when mGluR1 is activated by glutamate. In the current study, we tested the hypothesis that in female rats subjected to spinal nerve ligation (SNL), the inhibition of spinal estrogen synthesis or blockade of spinal mERα/mGluR1 would be antiallodynic during diestrus, whereas during proestrus, mGluR1 blockade would worsen the mechanical allodynia. ⋯ Findings suggest menstrual cycle stage-specific drug targets for and the putative clinical utility of harnessing endogenous opioids for chronic pain management in women, as well as the value of, if not the necessity for, considering menstrual cycle stage in clinical trials thereof. PERSPECTIVE: Intrathecal treatments that enhance spinal endomorphin 2 analgesic responsiveness under basal conditions lessen mechanical allodynia in a chronic pain model. Findings provide a foundation for developing drugs that harness endogenous opioid antinociception for chronic pain relief, lessening the need for exogenous opioids and thus prescription opioid abuse.
-
Trigeminal ganglion stimulation can be effective for trigeminal neuralgia. For patients who respond well to neurostimulation delivered percutaneously through the foramen ovale but require extensive revision and removal of instrumentation, a subtemporal approach for stimulation of the trigeminal ganglion is an alternative option as a salvage procedure. ⋯ The subtemporal approach for salvage placement of the trigeminal ganglion stimulating electrode was effective in this patient and minimized risks given her history of erosion and multiple operations. This suggests that the subtemporal approach is a viable salvage operation for trigeminal ganglion stimulation for trigeminal neuropathic pain.