Articles: hyperalgesia.
-
Biomed. Pharmacother. · Feb 2017
Diosgenin ameliorates development of neuropathic pain in diabetic rats: Involvement of oxidative stress and inflammation.
Neuropathic pain is one of the prevalent complications of diabetes mellitus (DM). Oxidative stress and inflammation are the principal determinants for its development. Pharmacological interventions targeted at alleviating or suppressing these pathways are clinically promising. ⋯ Biochemical analysis of serum samples and sciatic nerve and dorsal root ganglion (DRG) lysates showed restoration or improvement of nuclear factor-
B (NF-κB), malondialdehyde (MDA) level, activity of superoxide dismutase (SOD), catalase, tumor necrosis factor α (TNFα), and interleukin 1β (IL-1β) upon diosgenin treatment of diabetic rats. The obtained results exhibited antinociceptive potential of diosgenin in diabetic rats through lowering oxidative stress and inflammation and improving antioxidant defense system. This suggests possible therapeutic potential of diosgenin for alleviation and management of diabetic neuropathic pain. -
Bullatine A, a C20-diterpenoid alkaloid and one of the major effective ingredients in Aconiti brachypodi Radix (Xue-shang-yi-zhi-hao), can block pain hypersensitivity in a variety of rodent models through expression of spinal microglial dynorphin A. ⋯ These results suggest that bullatine A produces antinociception without induction of tolerance and inhibits morphine antinociceptive tolerance, and provide pharmacological basis for concurrent bullatine A and morphine treatment for chronic pain and morphine analgesic tolerance.
-
Bmc Complem Altern M · Jan 2017
Anti-allodynic effect of Buja in a rat model of oxaliplatin-induced peripheral neuropathy via spinal astrocytes and pro-inflammatory cytokines suppression.
Oxaliplatin, a widely used anticancer drug against metastatic colorectal cancer, can induce acute peripheral neuropathy, which is characterized by cold and mechanical allodynia. Activation of glial cells (e.g. astrocytes and microglia) and increase of pro-inflammatory cytokines (e.g. IL-1β and TNF-α) in the spinal cord play a crucial role in the pathogenesis of neuropathic pain. Our previous study demonstrated that Gyejigachulbu-Tang (GBT), a herbal complex formula, alleviates oxaliplatin-induced neuropathic pain in rats by suppressing spinal glial activation. However, it remains to be elucidated whether and how Buja (Aconiti Tuber), a major ingredient of GBT, is involved in the efficacy of GBT. ⋯ Our results indicate that Buja has a potent anti-allodynic effect in a rat model of oxaliplatin-induced neuropathic pain, which is associated with the inhibition of activation of astrocytes and release of pro-inflammatory cytokines in the spinal cord. Thus, our findings suggest that administration of Buja could be an alternative therapeutic option for the management of peripheral neuropathy, a common side-effect of oxaliplatin.
-
This study was to investigate the role of p38 activation via ERK1/2 phosphorylation in neurons and microglia of the spinal trigeminal subnucleus caudalis (Vc) in the promotion of orofacial hyperalgesia induced by unilateral anterior crossbite (UAC) traumatic occlusion in adult rats. U0126, a p-ERK1/2 inhibitor, was injected intracisternally before UAC implant. The effects of the U0126 injection were compared to those following the injection of SB203580, a p-p38 inhibitor. ⋯ Pretreatment with U0126 prevented the upregulation of both p-ERK1/2 and p-p38. Similarly to an intracisternal injection of SB203580, U0126 pretreatment attenuated the UAC-induced orofacial hyperalgesia. These data indicate that UAC caused orofacial hyperalgesia by inducing central sensitization via the activation of ERK1/2 and p38 in both neurons and microglia in the Vc, potentially impacting the effects of p-ERK1/2 during p38 activation.
-
The p75 neurotrophin receptor (p75NTR) and its activation of the sphingomyelin signaling cascade are essential for mechanical hypersensitivity resulting from locally injected nerve growth factor (NGF). Here the roles of the same effectors, and of the tropomyosin receptor kinase A (TrkA) receptor, are evaluated for thermal hyperalgesia from NGF. Sensitivity of rat hind paw plantar skin to thermal stimulation after local sub-cutaneous injection of NGF (500ng) was measured by the latency for paw withdrawal (PWL) from a radiant heat source. ⋯ Injection of an anti-TrkA antibody known to promote dimerization and activation of that receptor, independent of NGF, also caused thermal hyperalgesia, and prevented the further reduction of PWL from subsequently injected NGF. A non-specific inhibitor of tropomyosin receptor kinases, K252a, prevented thermal hyperalgesia from NGF, but not that from the anti-TrkA antibody. These findings suggest that the TrkA receptor has a predominant role in thermal hypersensitivity induced by NGF, while p75NTR and its pathway intermediates serve a modulatory role.