Articles: hyperalgesia.
-
Zhonghua Kou Qiang Yi Xue Za Zhi · Mar 2016
[Trigeminal purinergic P2X4 receptor involved in experimental occlusal interference-induced hyperalgesia in rat masseter muscle].
To explore the expression of purinergic p2X4 receptor (P2X4R) in trigeminal ganglion of rats after occlusal interference. Investigation of peripheral receptor mechanism of occlusal interference-induced masticatory muscle pain will aid the development of drug intervention against this condition. ⋯ Increased expression of trigeminal P2X4R involves in the development of occlusal interference-induced masseter hyperalgesia.
-
TRPV1 is a polymodally activated cation channel acting as key receptor in nociceptive neurons. Its function is strongly affected by kinase-mediated phosphorylation leading to hyperalgesia and allodynia. We present behavioral and molecular data indicating that TRPV1 is strongly modulated by Cdk5-mediated phosphorylation at position threonine-407(mouse)/T406(rat). ⋯ We found that position T406 is critical for the function of TRPV1 by modulating ligand-sensitivity, activation, and desensitization kinetics as well as voltage-dependence. Based on high resolution structures of TRPV1, we discuss T406 being involved in the molecular transition pathway, its phosphorylation leading to a conformational change and influencing the gating of the receptor. Cdk5-mediated phosphorylation of T406 can be regarded as an important molecular switch modulating TRPV1-related behavior and pain sensitivity.
-
Interaction of CD200 with its receptor CD200R has an immunoregulatory role and attenuates various types of neuroinflammatory diseases. ⋯ Intrathecal administration of the CD200R1 agonist CD200Fc induces very rapid suppression of neuroinflammatory reactions associated with glial activation and neuropathic pain development. This may constitute a promising and novel therapeutic approach for the treatment of neuropathic pain.
-
Here we studied whether and through which mechanisms spinal administration of histamine dihydrochloride (histamine) attenuates pain behavior in neuropathic animals. Experiments were performed in rats with spinal nerve ligation-induced neuropathy and a chronic intrathecal catheter for spinal drug delivery. Mechanical hypersensitivity was assessed with monofilaments while radiant heat was used for assessing nociception. ⋯ Additionally, histamine prevented central (presumably postsynaptically-induced) facilitation of hypersensitivity induced by N-methyl-d-aspartate. The results indicate that spinal histamine at the dose range of 0.1-10µg selectively attenuates mechanical hypersensitivity and ongoing pain in neuropathy. The spinal histamine-induced antihypersensitivity effect involves histamine H2 and GABA(A) receptors and (presumably neuropathy-induced) co-activation of spinal α1-adrenoceptors.
-
Spinal mGluR5 is a key mediator of neuroplasticity underlying persistent pain. Although brain mGluR5 is localized on cell surface and intracellular membranes, neither the presence nor physiological role of spinal intracellular mGluR5 is established. Here we show that in spinal dorsal horn neurons >80% of mGluR5 is intracellular, of which ∼60% is located on nuclear membranes, where activation leads to sustained Ca(2+) responses. ⋯ Decreasing intracellular glutamate via blocking EAAT-3, mimics the effects of intracellular mGluR5 antagonism. These findings show a direct link between an intracellular GPCR and behavioural expression in vivo. Blockade of intracellular mGluR5 represents a new strategy for the development of effective therapies for persistent pain.