Articles: sars-cov-2.
-
J. Matern. Fetal. Neonatal. Med. · Jul 2020
Perinatal management of SARS-CoV-2 infection in a level III University Hospital.
Over the past 4 months, SARS-CoV-2 pandemic has spread all over the world. The lack of understanding of this pandemic epidemiological characteristics, clinical implications and long term consequences have raised concern among healthcare workers. Pregnant women and newborns are a particularly worrisome population since data referring to real infection impact in these patients are scarce and management controversial. ⋯ No evidence of vertical transmission was found (all NP swab and bronchial secretions SARS-CoV-2 RT-PCR were negative). No newborn developed clinical evidence of infection. In the face of current scientific uncertainty, decisions of perinatal management, such as mother-infant separation and breastfeeding, must involve parents in a process of shared decision making.
-
J. Clin. Microbiol. · Jul 2020
Open Development and Clinical Validation of Multiple 3D-Printed Nasopharyngeal Collection Swabs: Rapid Resolution of a Critical COVID-19 Testing Bottleneck.
The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a severe international shortage of the nasopharyngeal swabs that are required for collection of optimal specimens, creating a critical bottleneck blocking clinical laboratories' ability to perform high-sensitivity virological testing for SARS-CoV-2. To address this crisis, we designed and executed an innovative, cooperative, rapid-response translational-research program that brought together health care workers, manufacturers, and scientists to emergently develop and clinically validate new swabs for immediate mass production by 3D printing. We performed a multistep preclinical evaluation of 160 swab designs and 48 materials from 24 companies, laboratories, and individuals, and we shared results and other feedback via a public data repository (http://github.com/rarnaout/Covidswab/). ⋯ Study staff preferred one of the prototypes over the others and preferred the control swab overall. The total time elapsed between identification of the problem and validation of the first prototype was 22 days. Contact information for ordering can be found at http://printedswabs.org Our experience holds lessons for the rapid development, validation, and deployment of new technology for this pandemic and beyond.
-
Testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) got off to a slow start in the United States. In this commentary, I describe my experience with CoV disease 2019 (COVID-19), with a focus on being tested at the University of North Carolina-Chapel Hill Respiratory Diagnostic Center on its inaugural day.
-
J. Clin. Microbiol. · Jul 2020
Evaluation of the QIAstat-Dx Respiratory SARS-CoV-2 Panel, the First Rapid Multiplex PCR Commercial Assay for SARS-CoV-2 Detection.
In the race to contain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), efficient detection and triage of infected patients must rely on rapid and reliable testing. In this work, we performed the first evaluation of the QIAstat-Dx respiratory SARS-CoV-2 panel (QIAstat-SARS) for SARS-CoV-2 detection. This assay is the first rapid multiplex PCR (mPCR) assay, including SARS-CoV-2 detection, and is fully compatible with a non-PCR-trained laboratory or point-of-care (PoC) testing. ⋯ No cross-reaction was encountered for any other respiratory viruses or bacteria included in the panel. The QIAstat-SARS rapid multiplex PCR panel provides a highly sensitive, robust, and accurate assay for rapid detection of SARS-CoV-2. This assay allows rapid decisions even in non-PCR-trained laboratory or point-of-care testing, allowing innovative organization.