Articles: sars-cov-2.
-
Comput Struct Biotechnol J · Jan 2020
Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model.
The infection of a novel coronavirus found in Wuhan of China (SARS-CoV-2) is rapidly spreading, and the incidence rate is increasing worldwide. Due to the lack of effective treatment options for SARS-CoV-2, various strategies are being tested in China, including drug repurposing. In this study, we used our pre-trained deep learning-based drug-target interaction model called Molecule Transformer-Drug Target Interaction (MT-DTI) to identify commercially available drugs that could act on viral proteins of SARS-CoV-2. ⋯ However, in our prediction, they may also bind to the replication complex components of SARS-CoV-2 with an inhibitory potency with Kd < 1000 nM. In addition, we also found that several antiviral agents, such as Kaletra (lopinavir/ritonavir), could be used for the treatment of SARS-CoV-2. Overall, we suggest that the list of antiviral drugs identified by the MT-DTI model should be considered, when establishing effective treatment strategies for SARS-CoV-2.
-
Frontiers in medicine · Jan 2020
D-dimer, Troponin, and Urea Level at Presentation With COVID-19 can Predict ICU Admission: A Single Centered Study.
Background: Identifying clinical-features or a scoring-system to predict a benefit from hospital admission for patients with COVID-19 can be of great value for the decision-makers in the health sector. We aimed to identify differences in patients' demographic, clinical, laboratory, and radiological findings of COVID-19 positive cases to develop and validate a diagnostic-model predicting who will develop severe-form and who will need critical-care in the future. Methods: In this observational retrospective study, COVID-19 positive cases (total 417) diagnosed in Al Kuwait Hospital, Dubai, UAE were recruited, and their prognosis in terms of admission to the hospital and the need for intensive care was reviewed until their tests turned negative. ⋯ ROC and Precision-Recall curves showed that among all variables, D dimers (>1.5 mg/dl), Urea (>6.5 mmol/L), and Troponin (>13.5 ng/ml) could positively predict the admission to ICU in patients with COVID-19. On the other hand, decreased Lymphocyte count and albumin can predict admission to ICU in patients with COVID-19 with acceptable sensitivity (59.32, 95% CI [49.89-68.27]) and specificity (79.31, 95% CI [72.53-85.07]). Conclusion: Using these three predictors with their cut of values can identify patients who are at risk of developing critical COVID-19 and might need aggressive intervention earlier in the course of the disease.
-
Frontiers in microbiology · Jan 2020
Quinolines-Based SARS-CoV-2 3CLpro and RdRp Inhibitors and Spike-RBD-ACE2 Inhibitor for Drug-Repurposing Against COVID-19: An in silico Analysis.
The novel coronavirus SARS-CoV-2 disease "COVID-19" emerged in China and rapidly spread to other countries; due to its rapid worldwide spread, the WHO has declared this as a global emergency. As there is no specific treatment prescribed to treat COVID-19, the seeking of suitable therapeutics among existing drugs seems valuable. The structure availability of coronavirus macromolecules has encouraged the finding of conceivable anti-SARS-CoV-2 therapeutics through in silico analysis. ⋯ Moreover, as SARS-CoV-2 Spike-glycoprotein uses human ACE2-receptor for viral entry, targeting the Spike-RBD-ACE2 has been viewed as a promising strategy to control the infection. The result shows rilapladib is the only quinoline that can interrupt the Spike-RBD-ACE2 complex. In conclusion, owing to their ability to target functional macromolecules of SARS-CoV-2, along with positive ADMET properties, quinoline,1,2,3,4-tetrahydro-1-[(2-phenylcyclopropyl)sulfonyl]-trans-(8CI), saquinavir, elvitegravir, oxolinic acid, and rilapladib are suggested for the treatment of COVID-19.
-
Frontiers in immunology · Jan 2020
Understanding the Pathophysiology of COVID-19: Could the Contact System Be the Key?
To date the pathophysiology of COVID-19 remains unclear: this represents a factor determining the current lack of effective treatments. In this paper, we hypothesized a complex host response to SARS-CoV-2, with the Contact System (CS) playing a pivotal role in innate immune response. CS is linked with different proteolytic defense systems operating in human vasculature: the Kallikrein-Kinin (KKS), the Coagulation/Fibrinolysis and the Renin-Angiotensin (RAS) Systems. ⋯ Angiotensin-Converting-Enzyme (ACE) 2 displays lung protective effects: it inactivates DABK and converts Angiotensin II (Ang II) into Angiotensin-(1-7) and Angiotensin I into Angiotensin-(1-9). SARS-CoV-2 binds to ACE2 for cell entry, downregulating it: an impaired DABK inactivation could lead to an enhanced activity of B1-receptors, and the accumulation of Ang II, through a negative feedback loop, may result in decreased ACE activity, with consequent increase of BK. Therapies targeting the CS, the KKS and action of BK could be effective for the treatment of COVID-19.