Articles: brain-injuries.
-
Traumatic brain injury is a prevalent condition that affects millions worldwide with no clear understanding or effective therapeutic management available. Military soldiers have a high risk of exposure to blast-induced traumatic brain injury (bTBI). Furthermore, alcohol drinking is common in this population, and studies have shown that post-TBI alcohol exposure can result in memory loss. ⋯ However, extended alcohol drinking for up to three weeks post mbTBI impaired long-term memory and was accompanied by intensified oxidative stress in brain regions associated with memory and anxiety. These findings, as well as those from previous in vitro TBI/alcohol studies, suggest a pathological synergy of physical force and post-impact alcohol exposure. This knowledge could potentially aid in establishing guidelines for TBI victims to avoid further injury to their brains as well as to help maximize their recovery following TBI.
-
Endoplasmic reticulum (ER) stress is recognized as a crucial contributor to the progression of traumatic brain injury (TBI) and represents a potential target for therapeutic intervention. This study aimed to assess the potential of J147, a novel neurotrophic compound, in alleviating ER stress by modulating related signaling pathways, thereby promoting functional recovery in TBI. To this end, adult mice underwent controlled cortical impact (CCI) injury to induce TBI, followed by oral administration of J147 one-hour post-injury, with daily dosing for 3 to 7 days. ⋯ At the molecular level, TBIinduced AMP-activated protein kinase (AMPK) dephosphorylation, sterol regulatory element binding protein-1 (SREBP-1) activation, and upregulation of ER stress marker proteins, including phosphorylated eukaryotic initiation factor-2α (p-eIF2a), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP) in perilesional cortex neurons at three days post-injury. Notably, the J147 treatment significantly attenuated AMPK dephosphorylation, SERBP-1 activation, and expression of the ER stress markers. In summary, this study reveals the therapeutic promise of J147 in mitigating secondary brain damage associated with TBI and improving long-term functional recovery by modulating ER stress pathways.
-
Journal of critical care · Dec 2024
Indications, results and consequences of electroencephalography in neurocritical care: A retrospective study.
Electrocencephalography (EEG) is a tool to assess cerebral cortical activity. We investigated the indications and results of routine EEG recordings in neurocritical care patients and corresponding changes in anti-seizure medication (ASM). ⋯ All EEGs were performed to investigate the presence of (NC)SE or seizures. A slowed, but continuous background pattern was found in nearly all patients and (NC)SE and seizures were rarely diagnosed. Adjustments in ASM were made in approximately half of the patients.
-
The neuroinflammatory response promotes secondary brain injury after traumatic brain injury (TBI). Triggering receptor expressed on myeloid cells 1 (TREM1) is a key regulator of inflammation. However, the role of TREM1 in TBI is poorly studied. ⋯ Moreover, after TREM1 was inhibited, the secretion of the proinflammatory factors TNF-α and IL-1β was significantly reduced, while the secretion of the anti-inflammatory factors IL-4 and IL-10 was significantly increased. Additionally, inhibition of TREM1 by LP17 significantly reduced neuronal apoptosis and ameliorated nerve dysfunction in TBI model rats. In conclusion, our findings suggest that TREM1 enhances neuroinflammation and promotes neuronal apoptosis after TBI, and these effects may be partly mediated via the ERK/cPLA2 signalling pathway.
-
Comment Multicenter Study Comparative Study Pragmatic Clinical Trial
Restrictive vs Liberal Transfusion Strategy in Patients With Acute Brain Injury: The TRAIN Randomized Clinical Trial.
Blood transfusions are commonly administered to patients with acute brain injury. The optimal hemoglobin transfusion threshold is uncertain in this patient population. ⋯ Patients with acute brain injury and anemia randomized to a liberal transfusion strategy were less likely to have an unfavorable neurological outcome than those randomized to a restrictive strategy.