IEEE transactions on medical imaging
-
IEEE Trans Med Imaging · Mar 2004
Comparative StudyDenoising functional MR images: a comparison of wavelet denoising and Gaussian smoothing.
We present a general wavelet-based denoising scheme for functional magnetic resonance imaging (fMRI) data and compare it to Gaussian smoothing, the traditional denoising method used in fMRI analysis. One-dimensional WaveLab thresholding routines were adapted to two-dimensional (2-D) images, and applied to 2-D wavelet coefficients. To test the effect of these methods on the signal-to-noise ratio (SNR), we compared the SNR of 2-D fMRI images before and after denoising, using both Gaussian smoothing and wavelet-based methods. ⋯ False discovery rate control was used to correct for multiple comparisons. The results show that the methods that produce smooth images introduce more false positives. The less smoothing wavelet-based methods, although generating more false negatives, produce a smaller total number of errors than Gaussian smoothing or wavelet-based methods with a large smoothing effect.
-
IEEE Trans Med Imaging · Feb 2004
Comparative StudyFully Bayesian spatio-temporal modeling of FMRI data.
We present a fully Bayesian approach to modeling in functional magnetic resonance imaging (FMRI), incorporating spatio-temporal noise modeling and haemodynamic response function (HRF) modeling. A fully Bayesian approach allows for the uncertainties in the noise and signal modeling to be incorporated together to provide full posterior distributions of the HRF parameters. The noise modeling is achieved via a nonseparable space-time vector autoregressive process. ⋯ We propose a novel HRF model made up of half-cosines, which allows distinct combinations of parameters to represent characteristics of interest. In addition, to adaptively avoid over-fitting we propose the use of automatic relevance determination priors to force certain parameters in the model to zero with high precision if there is no evidence to support them in the data. We apply the model to three datasets and observe matter-type dependence of the spatial and temporal noise, and a negative correlation between activation height and HRF time to main peak (although we suggest that this apparent correlation may be due to a number of different effects).
-
IEEE Trans Med Imaging · Jan 2004
Comparative StudyNormalized cuts in 3-D for spinal MRI segmentation.
Segmentation of medical images has become an indispensable process to perform quantitative analysis of images of human organs and their functions. Normalized Cuts (NCut) is a spectral graph theoretic method that readily admits combinations of different features for image segmentation. ⋯ The magnetic resonance images were preprocessed by the anisotropic diffusion algorithm, and three-dimensional local histograms of brightness was chosen as the segmentation feature. Results of the segmentation as well as limitations and challenges in this area are presented.
-
IEEE Trans Med Imaging · Jan 2004
Comparative StudyClustered components analysis for functional MRI.
A common method of increasing hemodynamic response (SNR) in functional magnetic resonance imaging (fMRI) is to average signal timecourses across voxels. This technique is potentially problematic because the hemodynamic response may vary across the brain. Such averaging may destroy significant features in the temporal evolution of the fMRI response that stem from either differences in vascular coupling to neural tissue or actual differences in the neural response between two averaged voxels. ⋯ Our methods are applied to simulated data for verification and comparison to other techniques. A human experiment was also designed to stimulate different functional cortices. Our methods separated hemodynamic response signals into clusters that tended to be classified according to tissue characteristics.
-
IEEE Trans Med Imaging · Nov 2003
Comparative StudyThe adaptive bases algorithm for intensity-based nonrigid image registration.
Nonrigid registration of medical images is important for a number of applications such as the creation of population averages, atlas-based segmentation, or geometric correction of functional magnetic resonance imaging (fMRI) images to name a few. In recent years, a number of methods have been proposed to solve this problem, one class of which involves maximizing a mutual information (MI)-based objective function over a regular grid of splines. This approach has produced good results but its computational complexity is proportional to the compliance of the transformation required to register the smallest structures in the image. ⋯ This spatial adaptation allows us to reduce the number of degrees of freedom in the overall transformation, thus speeding up the process and improving its convergence properties. To develop this method, we introduce several novelties: 1) we rely on radially symmetric basis functions rather than B-splines traditionally used to model the deformation field; 2) we propose a metric to identify regions that are poorly registered and over which the transformation needs to be improved; 3) we partition the global registration problem into several smaller ones; and 4) we introduce a new constraint scheme that allows us to produce transformations that are topologically correct. We compare the approach we propose to more traditional ones and show that our new algorithm compares favorably to those in current use.