Neuromodulation : journal of the International Neuromodulation Society
-
Intraoperative neuromonitoring (IONM) has been used in the implantation of spinal cord stimulation for both safety and confirmation of lead placement. It is less well defined in its use for dorsal root ganglion (DRG) stimulator placement. ⋯ This retrospective series demonstrates the utility and accuracy of IONM in not only confirming proper dorsal placement of a DRG electrode but also in maintaining a low adverse event profile. It further demonstrates that its utility in the real world with new users can be safe and accurate with an ease of integration.
-
Multicenter Study
The Use of Remote Programming for Spinal Cord Stimulation for Patients With Chronic Pain During the COVID-19 Outbreak in China.
Due to the impact of COVID-19 epidemic, face-to-face follow-up treatments for patients with chronic pain and implanted spinal cord stimulation (SCS) devices are forced to be delayed or stopped. This has led to more follow ups being done remotely. Meanwhile, with the development of 4G/5G networks, smartphones, and novel devices, remote programming has become possible. Here, we investigated the demand and utility of remote follow-ups including remote programming for SCS for patients with chronic pain. ⋯ The remote programming was in high demand among participants. Most of the participants have tried remote follow-ups or even remote programming. The remote programming appeared to be more efficient, economic and were widely recognized among participants.
-
Multicenter Study
Novel Intermittent Dosing Burst Paradigm in Spinal Cord Stimulation.
Intermittent dosing (ID), in which periods of stimulation-on are alternated with periods of stimulation-off, is generally employed using 30 sec ON and 90 sec OFF intervals with burst spinal cord stimulation (SCS). The goal of this study was to evaluate the feasibility of using extended stimulation-off periods in patients with chronic intractable pain. ⋯ ID burst SCS effectively relieved pain for six months. The largest group of subjects used IDB settings of 30 sec ON and 360 sec OFF. These findings present intriguing implications for the optimal "dose" of electricity in SCS and may offer many advantages such as optimizing the therapeutic window, extending battery life, reducing recharge burden and, potentially, mitigating therapy habituation or tolerance.
-
Randomized Controlled Trial Multicenter Study
Analgesic Efficacy of "Burst" and Tonic (500 Hz) Spinal Cord Stimulation Patterns: A Randomized Placebo-Controlled Crossover Study.
The aim of this study was to compare the efficacy in reducing pain intensity in adult subjects suffering from chronic back and leg pain of burst (BST) and tonic sub-threshold stimulation at 500 Hz (T500) vs. sham stimulation delivered by a spinal cord stimulation (SCS) device capable of automated postural adjustment of current intensity. ⋯ The findings suggest a superior outcome versus sham from T500 stimulation over BST stimulation and a practical equivalence between BST and sham in a group of subjects with leg and back pain habituated to tonic SCS and having achieved a stable status with stimulation.
-
Randomized Controlled Trial Multicenter Study
How Should we Use Multicolumn Spinal Cord Stimulation to Optimize Back Pain Spatial Neural Targeting? A Prospective, Multicenter, Randomized, Double-Blind, Controlled Trial (ESTIMET Study).
Recent studies have highlighted multicolumn spinal cord stimulation (SCS) efficacy, hypothesizing that optimized spatial neural targeting provided by new-generation SCS lead design or its multicolumn programming abilities could represent an opportunity to better address chronic back pain (BP). ⋯ The ESTIMET study confirms the significant benefit experienced on chronic BP by patients implanted with multicolumn SCS, independently from multicolumn lead programming. These good clinical outcomes might result from the specific architecture of the multicolumn lead, giving the opportunity to select initially the best column on a multicolumn grid and to optimize neural targeting with low-energy requirements. However, involving more columns than one does not appear necessary, once initial spatial targeting of the "sweet spot" has been achieved. Our findings suggest that this spatial concept could also be transposed to cylindrical leads, which have drastically improved their capability to shape the electrical field, and might be combined with temporal resolution using SCS new modalities.