Journal of neurophysiology
-
Anatomical and physiological data have implicated the pretectal olivary nucleus (PON) as the midbrain relay for the pupillary light reflex in a variety of species. To determine the nature of the discharge of pretectal light reflex relay neurons, we recorded their activity in monkeys that were fixating a stationary spot while a full-field random-dot stimulus was flashed on for 1 s. Based on their discharge patterns, neurons in or near the PON came in two varieties. ⋯ A minority of our recorded pretectal neurons discharged a burst of spikes at both light onset and light offset. For most of these transient neurons, neither the burst rate nor the interburst rate was significantly related to light intensity. We conclude that these neurons are not involved in the light reflex but subserve some other pretectal function.
-
The rat L(5) dorsal root ganglion (DRG) was chronically compressed by inserting a hollow perforated rod into the intervertebral foramen. The DRG was constantly perfused through the hollow rod with either lidocaine or normal saline delivered by a subcutaneous osmotic pump. Behavioral evidence for neuropathic pain after DRG compression involved measuring the incidence of hindlimb withdrawals to both punctate indentations of the hind paw with mechanical probes exerting different bending forces (hyperalgesia) and to light stroking of the hind paw with a cotton wisp (tactile allodynia). ⋯ The incidence of foot withdrawal in response to light stroking with a cotton wisp decreased significantly on the ipsilateral foot and was completely abolished on the contralateral foot in the lidocaine treatment groups. This study demonstrated that compression of the L(5) DRG induced a central pain syndrome that included bilateral mechanical hyperalgesia and tactile allodynia. Results also suggest that a lidocaine block, or a reduction in abnormal activity from the compressed ganglia to the spinal cord, could partially reduce mechanical hyperalgesia and tactile allodynia.
-
Fentanyl, a mu-opioid receptor agonist, produces analgesia while leaving vibrotactile sensation intact. We used positron emission tomography (PET) to study the mechanisms mediating this specific effect in healthy, right-handed human males (ages 18-28 yr). Subjects received either painful cold (n = 11) or painless vibratory (n = 9) stimulation before and after the intravenous injection of fentanyl (1.5 microgram/kg) or placebo (saline). ⋯ In addition, fentanyl, compared with placebo, produces a unique activation of the mid-anterior cingulate cortex during fentanyl analgesia, suggesting that this region of the cingulate cortex participates actively in mediating opioid analgesia. The results are consistent with a selective, fentanyl-mediated suppression of nociceptive spinothalamic transmission to the forebrain. This effect could be implemented directly at the spinal level, indirectly through cingulate corticofugal pathways, or by a combination of both mechanisms.
-
Activation of metabotropic glutamate receptors (mGluRs) has diverse effects on the functioning of vertebrate synapses. The cellular mechanisms that underlie these changes, however, are largely unknown. The role of presynaptic mGluRs in modulating Ca(2+) dynamics and regulating neurotransmitter release was investigated at the vestibulospinal-reticulospinal (VS-RS) synapse in the lamprey brain stem. ⋯ These results demonstrate the presence of presynaptic Group I mGluRs at the VS-RS synapse. Activation of these receptors leads to a rise in [Ca(2+)](i) and enhances the spontaneous and evoked release of glutamate. Taken together, these studies highlight the importance of synaptic activation of these facilitatory autoreceptors in both short-term plasticity and synaptic transmission.
-
Primary sensory neurons with myelinated axons were examined in vitro in excised whole lumbar dorsal root ganglia (DRGs) taken from adult rats up to 9 days after tight ligation and transection of the L(5) spinal nerve (Chung model of neuropathic pain). Properties of subthreshold membrane potential oscillations, and of repetitive spike discharge, were examined. About 5% of the DRG neurons sampled in control DRGs exhibited high-frequency, subthreshold sinusoidal oscillations in their membrane potential at rest (V(r)), and an additional 4.4% developed such oscillations on depolarization. ⋯ Tactile allodynia following spinal nerve injury is thought to result from central amplification ("central sensitization") of afferent signals entering the spinal cord from residual intact afferents. The central sensitization, in turn, is thought to be triggered and maintained in the Chung model by ectopic firing originating in the axotomized afferent neurons. Axotomy by spinal nerve injury enhances subthreshold membrane potential oscillations in DRG neurons, augments ectopic discharge, and hence precipitates neuropathic pain.