Journal of neurophysiology
-
Injury or inflammation affecting sensory neurons in dorsal root ganglia (DRG) causes hyperexcitability of DRG neurons that can lead to spontaneous firing and neuropathic pain. Recent results indicate that after chronic compression of DRG (CCD treatment), both hyperexcitability of neurons in intact DRG and behaviorally expressed hyperalgesia are maintained by concurrent activity in cAMP-protein kinase A (PKA) and cGMP-protein kinase G (PKG) signaling pathways. We report here that when tested under identical conditions, dissociation produces a pattern of hyperexcitability in small DRG neurons similar to that produced by CCD treatment, manifest as decreased action potential (AP) current threshold, increased AP duration, increased repetitive firing to depolarizing pulses, increased spontaneous firing and resting depolarization. ⋯ Although inflammatory signals are known to activate cAMP-PKA pathways, dissociation-induced hyperexcitability is unlikely to be triggered by signals released from inflammatory cells recruited to the DRG because of insufficient time for recruitment during the dissociation procedure. Inhibition by specific antagonists indicates that continuing activation of cAMP-PKA and cGMP-PKG pathways is required to maintain hyperexcitability after dissociation. The reduction of hyperexcitability by blockers of adenylyl cyclase and soluble guanylyl cyclase after dissociation suggests a continuing release of autocrine and/or paracrine factors from dissociated neurons and/or satellite cells, which activate both cyclases and help to maintain acute, injury-induced hyperexcitability of DRG neurons.
-
Synapses associated with the parallel fiber (pf) axons of cerebellar granule cells constitute the largest excitatory input onto Purkinje cells (PCs). Although most theories of cerebellar function assume these synapses produce an excitatory sequential "beamlike" activation of PCs, numerous physiological studies have failed to find such beams. Using a computer model of the cerebellar cortex we predicted that the lack of PCs beams is explained by the concomitant pf activation of feedforward molecular layer inhibition. ⋯ Blocking inhibition did not have a significant effect in the excitability of the cerebellar cortex. We conclude that pfs work in concert with feedforward cortical inhibition to regulate the excitability of the PC dendrite without directly influencing PC spiking output. This conclusion requires a significant reassessment of classical interpretations of the functional organization of the cerebellar cortex.
-
Some chronic pain conditions are maintained or enhanced by sympathetic activity. In animal models of pathological pain, abnormal sprouting of sympathetic fibers around large- and medium-sized sensory neurons is observed in dorsal root ganglia (DRGs). Large- and medium-sized cells are also more likely to be spontaneously active, suggesting that sprouting may be related to neuron activity. ⋯ The hyperexcitability and spontaneous activity of DRG neurons observed in this model were also significantly reduced by early nerve blockade. These effects of early nerve blockade on sprouting, excitability, and spontaneous activity were all observed 4-5 wk after the end of early nerve blockade, indicating that the early period of spontaneous activity in the injured nerve is critical for establishing the more long-lasting pathologies observed in the DRG. Individual spontaneously active neurons, labeled with fluorescent dye, were five to six times more likely than quiescent cells to be co-localized with sympathetic fibers, suggesting a highly localized correlation of activity and sprouting.
-
Injury to the superficial layers of cerebral cortex produces alterations in the synaptic responses of local circuits that promote the development of seizures. To further delineate the specific changes in synaptic strength that are induced by this type of cortical injury, whole cell voltage-clamp recordings were used to examine evoked and spontaneous synaptic events from layer V pyramidal cells in coronal slices prepared from surgically traumatized rat neocortices in which the superficial third of the cortex (layers I, II, and part of III) was removed. Slices from intact neocortices were used as controls. ⋯ EPSC and IPSC channel numbers and IPSC unit conductance did not differ between traumatized and intact slices. However, the mean unit conductance of EPSCs was higher (+25%) in traumatized slices. These findings suggest that acute injury to the superficial neocortical layers results in a disinhibition of cortical circuits that stems from a decline in GABA release likely due to the loss of superficial inhibitory interneurons and an enhancement of synaptic excitation consequent to an increase in the AMPA receptor unit conductance.
-
Activation of spinal muscarinic acetylcholine receptors (mAChRs) produces analgesia and inhibits dorsal horn neurons through potentiation of GABAergic/glycinergic tone and inhibition of glutamatergic input. To investigate the mAChR subtypes involved in the inhibitory effect of mAChR agonists on glutamate release, evoked excitatory postsynaptic currents (eEPSCs) were recorded in lamina II neurons using whole cell recordings in rat spinal cord slices. The nonselective mAChR agonist oxotremorine-M concentration-dependently inhibited the monosynaptic and polysynaptic EPSCs elicited by dorsal root stimulation. ⋯ Furthermore, oxotremorine-M significantly decreased spontaneous EPSCs in seven of 22 (31.8%) neurons, an effect that was blocked by 4-DAMP. This study provides new information that the M(2) mAChRs play a critical role in the control of glutamatergic input from primary afferents to dorsal horn neurons. The M(3) and M(2)/M(4) subtypes on a subpopulation of interneurons are important for regulation of glutamate release from interneurons in the spinal dorsal horn.